[Paper review 36]

Gaussian Processes for Big Data

(Hensman, et al., 2013)

[Contents]

- 1. Abstract
- 2. Introduction
- 3. Sparse GPs Revisited
- 4. SVI for GPs
 - 1. Global variables
 - 2. Natural gradients
 - 3. Latent variables
 - 4. Non-Gaussian likelihood
- 5. Discussion

1. Abstract

introduce SVI (Stochastic Variational Inference) for GP (Gaussian Process) models

- enable GP models to be **scalable**
- show that GPs can be variationally decomposed, to be dependent on a set of **globally** relevant inducing variables

2. Introduction

GP, used for regression, classification, unsupervised learning..

drawback : complexity of $O(n^3)$

To deal with this problem, various approximate techniques have been proposed

- 1) partition data set into separate groups
- 2) low rank approximation to the covariance matrix (complexity of ${\it O}(nm^2)$)
- 3) (by this paper)

"recent advances in VI can be combined with the idea of INDUCING VARIABLES to develop a practical algorithm for fitting GPs using SVI"

3. Sparse GPs Revisited

inducing variables of Titsias (2009)

notation

• **y** : data vector

(consists of y_i , which are noisy observation of the function $f(\mathbf{x_i})$)

(independent Gaussian, with precision eta)

- $\mathbf{X} = \{\mathbf{x_i}\}_{i=1}^n$: all the datapoints
- INDUCING VARIABLES : **u** values of the function f at the points $mathbfZ = \{\mathbf{z}_i\}_{i=1}^m$

 $egin{aligned} p(\mathbf{y} \mid \mathbf{f}) &= \mathcal{N}\left(\mathbf{y} \mid \mathbf{f}, eta^{-1}\mathbf{I}
ight) \ p(\mathbf{f} \mid \mathbf{u}) &= \mathcal{N}\left(\mathbf{f} \mid \mathbf{K}_{nm}\mathbf{K}_{mm}^{-1}\mathbf{u}, \widetilde{\mathbf{K}}
ight) \cdot \ p(\mathbf{u}) &= \mathcal{N}\left(\mathbf{u} \mid \mathbf{0}, \mathbf{K}_{mm}
ight) \end{aligned}$

- **K**_{mm} : covariance function evaluated between **all the inducing points**
- \mathbf{K}_{nm} : covariance function between **all inducing points** and **training points**
- $\tilde{\mathbf{K}} = \mathbf{K}_{nn} \mathbf{K}_{nm} \mathbf{K}_{mm}^{-1} \mathbf{K}_{mn}$

Apply Jensen's inequality on the conditional probability $p(\mathbf{y} \mid \mathbf{u})$

 $egin{aligned} \log p(\mathbf{y} \mid \mathbf{u}) &= \log \langle p(\mathbf{y} \mid \mathbf{f})
angle_{p(\mathbf{f} \mid \mathbf{u})} \ &\geq \langle \log p(\mathbf{y} \mid \mathbf{f})
angle_{p(\mathbf{f} \mid \mathbf{u})} riangleq \mathcal{L}_1 \ . \end{aligned}$

- $\langle \cdot \rangle_{p(x)}$: expectation under p(x).
- $\log \langle p(\mathbf{y} \mid \mathbf{f}) \rangle_{p(\mathbf{f} \mid \mathbf{u})}$: computed by $\mathcal{O}\left(n^3\right)$
- $\langle \log p(\mathbf{y} \mid \mathbf{f}) \rangle_{p(\mathbf{f} \mid \mathbf{u})} \triangleq \mathcal{L}_1$: computed by $\mathcal{O}\left(m^3\right)$.

Interpretation : belows are equivalent

- $\mathbf{u} = \mathbf{f}$
- $\mathbf{K}_{mm} = \mathbf{K}_{mn} = \mathbf{K}_{nm}$
- m = n inducing variables, and they are placed at training data locations
- no computational / storage advantage

when $p(\mathbf{y} \mid \mathbf{f})$ factorizes across the data, $p(\mathbf{y} \mid \mathbf{f}) = \prod_{i=1}^n p\left(y_i \mid f_i\right)$.

ightarrow then $\exp(\mathcal{L}_1) = \prod_{i=1}^n \mathcal{N}\left(y_i \mid \mu_i, eta^{-1}
ight) \exp\left(-rac{1}{2}eta ilde{k}_{i,i}
ight).$

- $\mu = \mathbf{K}_{nm} \mathbf{K}_{mm}^{-1} \mathbf{u}.$
- $ilde{k}_{i,i}$: *i* th diagonal element of $ilde{\mathbf{K}}$.

Bound of Titsias (2009)

• by marginalizing the inducing variables **u**

$$egin{aligned} \log p(\mathbf{y} \mid \mathbf{X}) &= \log \int p(\mathbf{y} \mid \mathbf{u}) p(\mathbf{u}) \mathrm{d} \mathbf{u} \ &\geq \log \int \exp\{\mathcal{L}_1\} p(\mathbf{u}) \mathrm{d} \mathbf{u} riangleq \mathcal{L}_2 \end{aligned}.$$

- $\mathcal{L}_2 = \log \mathcal{N} \left(\mathbf{y} \mid \mathbf{0}, \mathbf{K}_{nm} \mathbf{K}_{mm}^{-1} \mathbf{K}_{mn} + \beta^{-1} \mathbf{I} \right) \frac{1}{2} \beta \operatorname{tr}(\widetilde{\mathbf{K}}).$
 - $\circ \quad \mathbf{\Lambda} = \beta \mathbf{K}_{mm}^{-1} \mathbf{K}_{mn} \mathbf{K}_{nm} \mathbf{K}_{mm}^{-1} + \mathbf{K}_{mm}^{-1}. \\ \circ \quad \hat{\mathbf{u}} = \beta \mathbf{\Lambda}^{-1} \mathbf{K}_{mm}^{-1} \mathbf{K}_{mn} \mathbf{y}.$

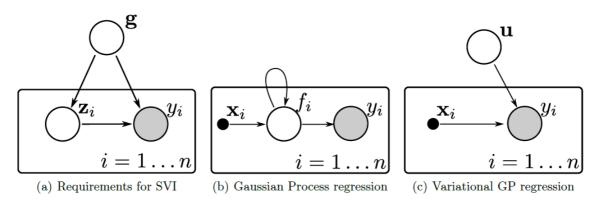
4. SVI for GPs

novelties of Titsias bound : rather than explicitly representing variational distribution for $q(\mathbf{u})$, these are collapsed!

but for SVI to work on GP, we need to "maintain an explicit representation of these inducing variables"

SVI (Stochastic Variational Inference)

- works on large dataset
- but can be only applied to (probabilistic) models
 - which have **global variables**
 - which factorizes in the observations and latent variables
- by introducing **u**, we satisfies the condition!



• But in above we have found lower bound as below $(\log\int\exp\{\mathcal{L}_1\}p(\mathbf{u})\mathrm{d}\mathbf{u}\triangleq\mathcal{L}_2$)

4-1. Global Variables

New lower bound : ($\mathcal{L}_2 \geq \mathcal{L}_3,$)

 $\log p(\mathbf{y} \mid \mathbf{X}) \geq \langle \mathcal{L}_1 + \log p(\mathbf{u}) - \log q(\mathbf{u})
angle_{q(\mathbf{u})} riangleq \mathcal{L}_3.$

Now, parameterize our variational distribution as $q(\mathbf{u}) = \mathcal{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S})$.

$$\mathcal{L}_3 = \sum_{i=1}^n \{\log \mathcal{N}\left(y_i \mid \mathbf{k}_i^{ op} \mathbf{K}_{mm}^{-1} \mathbf{m}, eta^{-1}
ight) - rac{1}{2}eta ilde{k}_{i,i} - rac{1}{2} ext{tr}(\mathbf{S} \mathbf{\Lambda}_i) iggr\} - ext{KL}(q(\mathbf{u}) \| p(\mathbf{u})) \,.$$

- \mathbf{k}_i : vector of the $i^{ ext{th}}$ column of \mathbf{K}_{mn}
- $\mathbf{\Lambda}_{i} = \beta \mathbf{K}_{mm}^{-1} \mathbf{k}_{i} \mathbf{k}_{i}^{\top} \mathbf{K}_{mm}^{-1}$.
- \mathcal{L}_3 can be written as sum of n terms!

Gradients of lower bound \mathcal{L}_3

• $\frac{\partial \mathcal{L}_3}{\partial \mathbf{m}} = eta \mathbf{K}_{mm}^{-1} \mathbf{K}_{mn} \mathbf{y} - \mathbf{\Lambda} \mathbf{m}$

•
$$\frac{\partial \mathcal{L}_3}{\partial \mathbf{S}} = \frac{1}{2} \mathbf{S}^{-1} - \frac{1}{2} \mathbf{\Lambda}$$

- setting the above to zero...
 - $\circ \ \ \mathbf{S} = \mathbf{\Lambda}^{-1}, \mathbf{m} = \hat{\mathbf{u}}.$
 - This is when $\mathcal{L}_2 = \mathcal{L}_3$

4-2. Natural Gradients

SVI works by taking steps in the direction of **approximate natural gradient** (= $\tilde{g}(\theta) = G(\theta)^{-1} \frac{\partial \mathcal{L}}{\partial \theta}$)

canonical and expectation parameters

•
$$heta_1 = \mathrm{S}^{-1} \mathrm{m}$$

 $heta_2 = -rac{1}{2} \mathrm{S}^{-1}$

$$egin{array}{ll} oldsymbol{\eta}_1 = oldsymbol{m} \ \eta_2 = oldsymbol{m} oldsymbol{\pi}^ op + oldsymbol{S} \end{array}$$

simplification of natural gradient : $\tilde{g}(\boldsymbol{\theta}) = G(\boldsymbol{\theta})^{-1} \frac{\partial \mathcal{L}_3}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{L}_3}{\partial \eta}.$

Therefore , by $oldsymbol{ heta}_{(t+1)} = oldsymbol{ heta}_{(t)} + \ell rac{\mathrm{d}\mathcal{L}_3}{\mathrm{d}\eta}$,,

$$egin{aligned} heta_{2(t+1)} &= -rac{1}{2} \mathbf{S}_{(t+1)}^{-1} \ &= -rac{1}{2} \mathbf{S}_{(t)}^{-1} + \ell \left(-rac{1}{2} \mathbf{\Lambda} + rac{1}{2} \mathbf{S}_{(t)}^{-1}
ight) \ oldsymbol{ heta}_{1(t+1)} &= \mathbf{S}_{(t+1)}^{-1} \mathbf{m}_{(t+1)} \ &= \mathbf{S}_{(t)}^{-1} \mathbf{m}_{(t)} + \ell \left(eta \mathbf{K}_{mm}^{-1} \mathbf{K}_{mn} \mathbf{y} - \mathbf{S}_{(t)}^{-1} \mathbf{m}_{(t)}
ight) \end{aligned}$$

4-3. Latent Variables

- enable **online learning** for GPR using SVI
- to perform SVI with latent variable, need factorization (like figure 1-(a))

$$egin{aligned} \log p(\mathbf{y}) &= \log \int p(\mathbf{y} \mid \mathbf{X}) p(\mathbf{X}) \mathrm{d} \mathbf{X} \ &\geq \int q(\mathbf{X}) \left\{ \mathcal{L}_3 + \log p(\mathbf{X}) - \log q(\mathbf{X})
ight\} \mathrm{d} \mathbf{X} \end{aligned}$$

$$\bullet \hspace{0.2cm} q(\mathbf{X}) &= \prod_{i=1}^n q\left(\mathrm{x}_i\right). \end{aligned}$$

Too perform SVI in this model, alternate between....

- (1) selecting a mini-batch of data
- (2) optimizing relevant variables of $q(\mathbf{X})$ (with $q(\mathbf{u})$ fixed) and updating $q(\mathbf{u})$ using the approximate natural gradient

4-4. Non-Gaussian likelihood

Advantage of using

$$\mathcal{L}_3 = \sum_{i=1}^n \{ \log \mathcal{N}\left(y_i \mid \mathbf{k}_i^{ op} \mathbf{K}_{mm}^{-1} \mathbf{m}, eta^{-1}
ight) - rac{1}{2} eta ilde{k}_{i,i} - rac{1}{2} ext{tr}(\mathbf{S} \mathbf{\Lambda}_i) iggr\} - ext{KL}(q(\mathbf{u}) \| p(\mathbf{u}))$$

ightarrow enable inference with non-Gaussian likelihoods

ex) binary, probit likelihood

5. Discussion

method for inference in GP using SVI (enable scalability)

discuss the bound on $p(y \mid u)$ in detail

(becomes tight when $\mathbf{Z}=\mathbf{X}$)

complexity becomes ${\cal O}(m^3)$