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1. Abstract  
introduce SVI (Stochastic Variational Inference) for GP (Gaussian Process) models

enable GP models to be scalable

show that GPs can be variationally decomposed, to be dependent on a set of globally 
relevant inducing variables

 

2. Introduction  
GP, used for regression, classification, unsupervised learning..

drawback : complexity of 

 

To deal with this problem, various approximate techniques have been proposed

1) partition data set into separate groups

2) low rank approximation to the covariance matrix ( complexity of  )

3) (by this paper)

"recent advances in VI can be combined with the idea of INDUCING VARIABLES to 
develop a practical algorithm for fitting GPs using SVI"
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3. Sparse GPs Revisited  
inducing variables of Titsias (2009)

notation

 : data vector

( consists of , which are noisy observation of the function  )

( independent Gaussian, with precision  )

 : all the datapoints

INDUCING VARIABLES :  values of the function  at the points 

 

.

 :  covariance function evaluated between all the inducing points
  : covariance function between all inducing points and training points

 

 

 

Apply Jensen's inequality on the conditional probability 

.

 : expectation under .

 : computed by  

 : computed by  

 

Interpretation : belows are equivalent

 inducing variables, and they are placed at training data locations
no computational / storage advantage

 

when  factorizes across the data,  .

 then .

.
 :   th diagonal element of . 

 

Bound of Titsias (2009)

by marginalizing the inducing variables 
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4. SVI for GPs  
novelties of Titsias bound : rather than explicitly representing variational distribution for , 
these are collapsed!

but for SVI to work on GP, we need to "maintain an explicit representation of these inducing 
variables"

 

SVI (Stochastic Variational Inference)

works on large dataset

but can be only applied to (probabilistic) models 

which have global variables
which factorizes in the observations and latent variables

by introducing , we satisfies the condition!

 

But in above we have found lower bound as below

(  )

 

4-1. Global Variables  
New lower bound : (  )

.

 

Now, parameterize our variational distribution as .
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  : vector of the  column of  
 .

 can be written as sum of  terms!

 

Gradients of lower bound 

setting the above to zero...

 ,  
This is when   

 

4-2. Natural Gradients  
SVI works by taking steps in the direction of approximate natural gradient ( =  

)

canonical and expectation parameters

 

simplification of natural gradient : .

 

Therefore , by ,

.

 

4-3. Latent Variables  
enable online learning for GPR using SVI

to perform SVI with latent variable, need factorization ( like figure 1-(a) )
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.

.

 

Too perform SVI in this model, alternate between....

(1) selecting a mini-batch of data

(2) optimizing relevant variables of  ( with  fixed )

and updating  using the approximate natural gradient

 

4-4. Non-Gaussian likelihood  
Advantage of using 

 enable inference with non-Gaussian likelihoods

ex) binary, probit likelihood ....

 

5. Discussion  
method for inference in GP using SVI ( enable scalability )

discuss the bound on  in detail

( becomes tight when  )

complexity becomes 
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